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Kurzfassung

In dieser Arbeit wird eine neue Methode zur Messung der Qualitat von Passwértern vorgestellt.
Die dafiir verwendete Methode basiert auf Natural language processing. Berilcksichtigt wer-
den aber ebenfalls simple hybride Waérterbuchattacken, bis hin zu gezielten Attacken auf einen
einzelnen Benutzer. In der Einleitung wird eine Ubersicht (iber die die verschiedensten Angriffe
auf Passwoérter gegeben und mdglichkeiten aufgezeigt passworter gegen diese zu starken.
Weiters werden weit verbreitete Fehlkonfigurationen welche solche attacken ermdéglichen disku-
tiert. Im Rahmen dieser Arbeit wurde ein Proof of Concept in golang entwickelt, um einen
Benutzer eine Bewertung seines Passworter Uber Entropie hinaus zur verfigung gestellt. Ein
"proof of concept” in form einer golang Applikation wurde im Rahmen dieser Arbeit entwickelt
um zu zeigen, dass Passwortqualitdts Rickmeldungen nicht ausschlie3lich Entropie basierend
sein muss. Diese Software wurde gegen zwei Datensets aus Passwoértern, welche 6ffentlich
zur verfigung stehen, getestet. Die Ergebnisse dieser Arbeit kbnnen verwendet werden, um
bestehende Software dahingehend anzupassen und Benutzern eine bessere Rickmeldung
bezlglich der Qualitat ihrer Passwdrter zu geben, damit nicht nur Angreifer, sondern auch Be-
nutzer von Natural Language encodern profitieren kénnen.



Abstract

This paper describes a new way to measure the quality of passwords. This method accounts
for attacks based on Natural language processing. These attacks can range from simple hybrid
dictionary attacks, to targeted attacks towards a specific user with an old known password.
But no matter how sophisticated a password cracking attack is in the end it is just some sort
of guessing. The goal behind new methods of password cracking is always to decrease the
number of password guesses needed. Therefore in the introduction an overview of different
password attacks and how to strengthen a password against them is given. But to strengthen
a password one can not only increase it’s entropy. Unfortunately most people follow common
patterns while creating their passwords, and stick to those patterns when it comes to increasing
entropy. Furthermore common misconfigurations that additionally empower these attacks as
password policies are discussed. A proof of concept in the form of a golang application was
written to show that password quality feedback to a user is not solely possible through entropy.
It was tested against two Datasets of passwords which were publicly available. The results
in this paper can be used to alter tools giving users better feedback about the quality of their
passwords, to have not only attackers benefit from Natural Language encoders but the user.

Keywords: password, nlp, quality, dawg, PCFG, CFG, grammar, security
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1 Introduction & Background

Authentication is an important task most computer systems need to solve. Nowadays authen-
tication is done through the use of at least two of the factors knowledge, ownership and in-
herence. This paper will only address one of these factors, knowledge. This factor usually is
implemented in the form of a password, but it is necessary for the security of a password that it
remains secret. To use passwords in a secure manner multiple problems must be addressed.
The password has to be stored in a secure way, a salted hash for example. A cryptological
hash function is a special form of the hash function, which should be collision-resistant and, by
definition, always a one-way function.

A hash function is a function that maps a string of any length to a fixed-length string. Appli-
cations of cryptological hash functions are mainly data processing, integrity checking of files or
messages. Or as in our use case, they are used to conceal password files to increase security if
the password file gets compromised. If a password is going to be transmitted via a network this
has to happen in a secure manner to ensure it remains a secret. A salt is a randomly selected
string in cryptography that is appended to a given cleartext before use as an input of a hash
function to increase the entropy of the input. It is used for storing computer passwords, the salt
is generated and stored together with the resulting hash value in a database. For example if the
password is used as authentication on a website, TLS encryption has to be used to ensure that
your password actually will be transmitted to the correct website, since TLS not only encrypts
your message but also ensures authenticity. The issues in this paper do not only apply to pass-
words for web services but to any computer system. Nowadays security experts recommend
the use of password vaults sometimes called wallets.[2]

But even if these preconditions are met, the secret password itself can still be an attack vector.
In this work a new approach to whether passwords quality can be determined on basis of how
modern password attacks work is given. A final implementation of this could happen inside a
password vault like keepassx or pwgen.



Password1

At least one uppercase letter
At least one lowercase letter
At least one digit

At least 8 characters

Figure 1: A common password quality meter

1.1 Password quality

The quality of a password is represented in a function of length, complexity and unpredictability.
Usually we scale passwords via length and complexity every few years. This must happen as
the rate at which systems can attack (guess) passwords are getting higher every year.

A problem with passwords is the so called ,Snake Oil* industry. [10] There is an whole in-
dustry that provides pseudo-mathematical nonsense in an effort to sell their products. Users
are often overwhelmed with information and advertising from an industry trying to sell security
products. Strong passwords can not be sold, so they are not part of this information and there-
fore often forgotten about. Companies and even private households spend money on Anti-virus
software and Firewalls that can not protect them if their passwords are insecure. If for example
they want to know if their password 'Password1’ is secure, they enter it on the website they want
to use it on, and the website confirms that it is secure. Most ‘passwordquality’ checks nowadays
check it like this:

But as explained later on, under dictionary attack this is one of the worst passwords possible.

Another misconception is that rotating passwords more often makes them more secure.
The National Cyber Security Centre, a UK Goverment Organization already stated this
misbehavior.[8] Password rotations do not increase security. Similar passwords will be used
substrings get rotated, numbers increased or the one special character moves. These patterns
are the main attack surface on passwords nowadays and should be avoided, not promoted.

In which situations does a forced-password-change actually increase security? If an attacker
actually got hold of a password, but is not able to either:

e extract all data for example via a database dump

¢ is not able to install any kind of backdoor



e is not able to retrieve the password again

For the last point the question of how the attacker got the password in the first place is
important. He may have gathered the password directly via phishing or via a Keylogger. A
paper from 2010 by Yingian Zhang is one of the most complete works concerning password
reuse.[18] He was able to proof that password reuse hurts security more than it benefits. But
there was proof of that this is a bad idea since 1999: A paper with the perfectly matching title
"The User is not the Enemy’ by Adams and Sasse[1].

To date, research on password security has focused on designing technical mech-
anisms to protect access to systems; the usability of these mechanisms has rarely
been investigated. [...] Since security mechanisms are designed, implemented,
applied and breached by people, human factors should be considered in their de-
sign. It seems that currently, hackers pay more attention to the human link in the
security chain than security designers do, e.g. by using social engineering to obtain
passwords.

Unfortunately this is still a problem. For example administrators forcing password policies on
users they do not have to obey themselves. In the last years practices as infrastructure as
Code (laC) and Infrastructure as a Service laaS made it possible to analyze and eliminate
these behaviors.

So configuration management tools are a major tool not only in increasing usability but in
increasing security.

1.2 Password cracking

Password cracking is as old as passwords themselves. There are numerous papers describing
various techniques for password cracking. The problem is the lack of information a typical user
is able to get about how to protect himself from them. From the view of the password cracker
the weakest link is always the approach to crack the password. The weakest link usually isn’t
the entropy. A Brute-force approach usually is the last thing an attacker resorts to.

1.2.1 Brute-force attack

(I) A cryptanalysis technique or other kind of attack method involving an exhaustive
procedure that tries a large number of possible solutions to the problem. (See:
impossible, strength, work factor.)

Tutorial: In some cases, brute-force involves trying all of the possibilities. For ex-
ample, for cipher text where the analyst already knows the decryption algorithm, a
brute-force technique for finding matching plain text is to decrypt the message with



Table 1: Maximum calculationtime for a brute-force attack at 1 billion keys per second

codespace 10 [0-9] 26 [a-2] 52 [A-Z] 62 [A-z;0-9] 96 +special chars

4 characters <1m second <1 second <1second <1second <1 second
5 characters <1m second <1 second <1second <1second 8 seconds

6 characters 1m seconds <1 second 20 seconds 58 seconds 13 minutes

7 characters | 10m seconds 8 seconds 17 minutes 1 hour 21 hours

8 characters | 100m seconds 4 minutes 15 hours 3 days 84 days

9 characters | 1 second 2 hours 33 days 159 days 22 years
10 characters | 10 seconds 2 days 5 years 27 years 2108 years
11 characters | 2 minutes 42 days 238 years 1649 years 202k years
12 characters | 17 minutes 2 years 12.4k years 102k years 19M years

every possible key. In other cases, brute-force involves trying a large number of pos-
sibilities but substantially fewer than all of them. For example, given a hash function
that produces an N-bit hash result, the probability is greater than 1/2 that the analyst
will find two inputs that have the same hash result after trying only 2**(N/2) randomly
chosen inputs. [13]

To protect a password from a brute-force attack one can just increase the password’s length.
This will increase the password’s entropy and therefore makes it harder to crack via brute-force.

In the following table 1 you can see how easily when a brute-force attack is applicable and
when not.

From this table it is easy to see that it is quite easy to create a password that is not vulnerable
to a Brute-force attack. But since the brute-force is always the last approach from the view of
an attack it is absolutely irrational to see it as the first approach to measure the quality of your
password.

1.2.2 Dictionary attack
The Internet Security Glossary describes a Dictionary attack as:

(I An attack that uses a brute-force technique of successively trying all the words in
some large, exhaustive list. Examples: Attack an authentication service by trying all
possible passwords. Attack an encryption service by encrypting some known plain-
text phrase with all possible keys so that the key for any given encrypted message
containing that phrase may be obtained by lookup.[13]

So it is very similar to a brute-force attack, but the passwords used for the brute-force aren’t
generated but read from a database. This database is called the dictionary. The first dictionary



attacks used just standard dictionaries. But nowadays it is more common to use passwords
from password leaks. As a thesaurus does not provide nearly as good results.

1.2.3 Hybird attack

A hybrid attack is a combination of these two attacks. On the one hand you have a dictionary
but you extend it with the result of a brute-force attack on the other hand. So usually you take
a word from the dictionary and append or prepend a character from the Brute-Force keyspace.
Even common replacements of characters are possible as seen for example in leetspeak. So
the word ’eleet’ from the dictionary would be replaced by 31337 or 3I133t. [5]

1.3 Letter frequency

Letter frequency analysis is one of the first methods[12] described to break classical ciphers.

The letter frequency is a statistical quantity indicating either the absolute number of appear-
ances of a specific letter in a text or this number in relation to the total number of the letters in
a text. Counts on the frequency of letters or sounds in texts or text corpora have been detected
since the early 19th century at the latest. While earlier assumptions generally thought to predict
the statistical distribution of the frequency of letters by the Zipf’s law. The frequency distribution
of the letters depends on the natural language of the text. Passwords have their own artificial
language, this language will be analyzed below.

For these analysis it could also be interesting to see how often a letter appears at the begin-
ning, in the middle or at the end of a password.

In the following two tables the letter frequency of the English language is compared with
the letter frequency within the analyzed passwords. First you will notice that the frequency on
the password site does not add up to 100% The probability that a character is a letter is only
about 55%. But for generating a PCFG to generate passwords the resulting grammar will have
to consider a lot more information. Not only single letters but tuples and triples, have to get
analyzed. But furthermore the position of each of these. For example the probability for the first
letter of an English word to be an a is 11.6%. Whereas the probability for an a overall the word
is only 8.167%.



Table 2: Relative frequencies in the english language[11]

letter | frequency english letter | frequncy password
e 12.702% a 6.6006274 %
t 9.056% e 6.2969117 %
a 8.167% [ 4.2088804 %
o] 7.507% o] 4.2038164 %
[ 6.966% r 41757946 %
n 6.749% n 4.0893664 %
s 6.327% s 3.938884 %
h 6.094% I 3.3826761 %
r 5.987% t 3.2035873 %
d 4.253% m 2.5830574 %
I 4.025% c 2.314984 %
c 2.782% d 2.2931213 %
u 2.758% h 2.092243 %
m 2.406% u 1.8772438 %
w 2.360% b 1.8341757 %
f 2.228% y 1.8046929 %
g 2.015% g 1.6083426 %
y 1.974% p 1.5811483 %
p 1.929% k 1.5549033 %
b 1.492% w 1.0565172 %
% 0.978% f 0.9466438 %
k 0.772% j 0.91134226 %
j 0.153% v 0.82878506 %
X 0.150% z 0.4604551 %
q 0.095% X 0.40925556 %
z 0.074% q 0.28185317 %
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Figure 2: Keyboard walk on QWERTY[9]

1.4 Keyboard layout

The keyboard layout describes the coding of the individual keys as well as their location on the
keyboard of a computer. In principle, a distinction must be made between the physical allocation
which usually is nothing more than the printing on the keys, and the variable keyboard layout
which can be adapted via software, and therefore easily switched.

Keyboard layouts often use the QWERTY-labeled arrangement of the letter buttons. There
are certain keyboard layouts as Neo-layout for the German language and the Dvorak layout the
for English language that considered these frequencies while placing their keys. But QUERTY
or QUERTZ does not, it was designed in 1886 by the American printer and newspaper pub-
lisher Christopher Latham Sholes. One of its design goals was that it's easy to type the word
"Typewriter’. The other more important design goal was to separate tuples apart to decrease
the likelihood of the typewriter to jam. Which makes it especially hard to learn and to type on
keyboard layout for computers. Due to the popularity of QUERT Y-labeld keyboards a lot of com-
mon password patterns naturally derive from the keyboard layout on which they are created.
These patterns don’t have to be English language they follow only the layout. It is common
that passwords follow a specific pattern on the keyboard layout they are created on. But this
can also just manifest in the fact that certain characters that are hard to reach aren’t used as
often. These patterns have been already used for attacks, and are generated by all common
password crack tools.

So since passwords are an artifical language generated on and for a specific keyboard layout
the letter frequency of passwords shifts towards easy to reach characters on this layout.



Table 3: Relative frequencies in the english language

letter | frequency | letter | frequency
th 1.52 % | ar 0.04 %
en 0.55% | nt 0.56 %
ng 0.18 % | ti 0.34 %
he 1.28 % | ve 0.04 %
ed 0.583% | ha 0.56 %
of 0.16 % | as 0.33 %
in 0.94 % | ra 0.04 %
to 0.52% | es 0.56 %
al 0.09 % | te 0.27 %
er 0.94% | Id 0.02 %
it 0.50 % | st 0.55 %
de 0.09 % | et 0.19 %
an 0.82% | ur 0.02 %
ou 0.50 %
se 0.08 %
re 0.68 %
ea 0.47 %
le 0.08 %
nd 0.63 %
hi 0.46 %
sa 0.06 %
at 0.59 %
is 0.46 %
Si 0.05 %
on 0.57 %
or 0.43 %




2 Natural Language Processing

Natural language processing (NLP) describes methods and algorithms to help computers un-
derstand human languages. Modern approaches to achieve this are using a method called
'machine learning’. It is a field in computer science that is closely related to statistics. The
idea is that a ’learner’ is able to generalize from a specific experience. This concept can be
applied to software via various ways. For example artificial neural networks modeling the way
the human brain solves problems using a collection of neural units. In this paper the approach
of an Bayesian network will be used.

Specifically a Markow network which is an undirected and possibly cyclic version of an
Bayesian network.

2.1 Context-free grammar

A grammar can be regarded as a device
that enumerates the sentences of a
language.[4]

Noam Chomsky

But can it be hacked to enumerate the possibilities of a password? Recent attacks as these
in 2011 on lastpass showed it is not only possible but already happened. But what if we can
use these grammars not to attack passwords but to make them more secure?

A context-free grammar (CFQG) is a term used in formal language theory to describe a certain
type of formal grammar. A context-free grammar is a set of production rules that describe all
possible strings in a given formal language. Production rules are simple replacements.

In context-free grammars, all rules are one to one, one to many, or one to none. These rules
can be applied regardless of context. The left-hand side of the production rule is also always
a nonterminal symbol. This means that the symbol does not appear in the resulting context-
free language (CFL). Rules can also be applied in reverse to check if a string is grammatically
correct according to the grammar. [4]

2.1.1 Suffix automaton

A suffix tree is a way of structuring data for later processing. It structures the information in
a tree where every leaf represents a suffix of the input. A DAWG (deterministic acyclic word
graph) derived from the String ‘password’ for example is an automaton able to recognize all
the substrings of ‘password’. ‘passwor’, ‘passwo’, ‘passw’, ‘pass’, ’‘pas’, '‘pa’, 'p’ are all seen als
valid by this automaton. Every other string is invalid and would return false.[7]

An example in a visualized form with the input 'pass1’:
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Figure 3: A Suffix tree

2.2 Probabilistic context free grammars

Probabilistic context free grammars (PCFG) add probabilities to context free grammars.

Grammar theory to model symbol strings originated from work in computational linguistics
aiming to understand the structure of natural languages. Probabilistic context free grammars
(PCFGs) have been applied in probabilistic modeling of RNA structures almost 40 years after
they were introduced in computational linguistics.

PCFGs extend context-free grammars similar to how hidden Markow models extend regular
grammars. Each production is assigned a probability. The probability of a derivation (parse) is
the product of the probabilities of the productions used in that derivation. These probabilities
can be viewed as parameters of the model, and for large problems it is convenient to learn these
parameters via machine learning. A probabilistic grammar’s validity is constrained by context of
its training dataset.

PCFGs have application in areas as diverse as natural language processing to the study the
structure of RNA molecules and design of programming languages. Designing efficient PCFGs
has to weigh factors of scalability and generality. Issues such as grammar ambiguity must be
resolved. The grammar design affects results accuracy. Grammar parsing algorithms have var-
ious time and memory requirements.

Derivation: The process of recursive generation of strings from a grammar.
Parsing: Finding a valid derivation using an automaton.
Parse Tree: The alignment of the grammar to a sequence.

An example of a parser for PCFG grammars is the pushdown automaton. A more efficient

alternative to the pushdown automaton is the Cocke—Younger—Kasami (CYK) algorithm (CYK)
algorithm which is described in detail later on in this paper.
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A PCFG can be defined by following quintuple: G = (M, T, R, S, P)
where
M is the set of non-terminal symbols
T is the set of terminal symbols
R is the set of production rules
S is the start symbol
P is the set of probabilities on production rules

2.2.1 Markow chain

The Russian mathematician Andrey Markow defined a special stochastic process that satisfies
the Markow property. A Markow chain (Markow chain, Markof chain, Markoff chain) is a special
stochastic process. A Markow chain is defined by the fact that knowledge of a limited history
is just as good as predictions of future development as well as knowledge of the entire history
of the process. Markow chains of different order are distinguished. In the case of a first-order
Markow chain, this means that the future of the system depends only on the present (the current
state) and not on the past. The mathematical formulation in the case of a finite state quantity
requires only the notion of discrete distribution as well as the conditional probability, whereas
the concepts of filtration and conditional expectation are needed in the case of time. The aim of
using Markow chains is to specify probabilities for the occurrence of future events. The terms
Markow chain and Markow process are generally used synonymously.

To some extent, however, processes are defined in a discrete time (discrete state space)
for the delimitation with Markow chains, and processes with steady process time (steady state
space) with Markow processes.

2.3 Cocke—Younger—Kasami algorithm

The Cocke-Younger-Kasami algorithm (CYK-algorithm) is an algorithm that was created in the
1960er years by Itiroo Sakai, John Cocke, Tadao Kasami, Jacob Schwartz and Daniel Younger.
With this algorthim it is possible to determine if a specific String in our case a password is part
of a CFL. The algorithm in its standard form requires the grammar to be in Chomsky normal
form.

2.4 Chomsky normal form

In formal language theory, a context-free grammar G has to fullfil a set rules to be considered
as Chomsky normal form. These rules, described by Noam Chomsky in 1959 require all of its
production rules are of the form:

11



A — BC,or

A —a,or

S — ¢,

where A, B, and C are nonterminal symbols, a is a terminal symbol (a symbol that represents
a constant value), S is the start symbol, sometimes also called sentence symbol, and ¢ de-
notes the empty string. Also, neither B nor C may be the start symbol, and the third production
rule can only appear if ¢ is in LG, namely, the language produced by the context-free grammar
G. Every grammar in Chomsky normal form is context-free, and conversely, every context-free
grammar can be transformed into an equivalent one which is in Chomsky normal form and has
a size no larger than the square of the original grammar’s size.

First generate a new Startsymbol Sy an the rule S — Sy. This guarantees that the startsymbol
does not appear anywhere on the righthandside. Second replace all rules with more than one
terminal on the right side with a nonterminal.

A — abC becomes

A — aBC

B—b

Third righthandsides with more then 2 nonterminals get replaced. Again an example: A —
aBCD becomes

A — aBFE

E—CD

Now all e-rules have to be eliminated. A e-rule is in the form:
A—e¢
Where A is not the Startsymbol. Hopcroft and Ullman (1979) call such nonterminals nullable,
and compute them as follows: If a ruleA — ¢ exists, then A is nullable. If arule A — X; ... X,
exists, and each X; is nullable, then A is nullable, too.
Last remove all so called UNIT rules. These are rules as: A — B
IF B for example is:
B—b
you would replace it both of the rules above with:
A—Db

Chomsky is one of the most prominent American linguists of the present, who, through the
combination of the scientific disciplines of linguistics, cognitive science and computer science,
played a major role in the development of the latter half of the 20th century. His contributions to
the general linguistic sciences as well as his models of the generative transformation grammar
altered the predominant American structuralism. His criticism of behaviorism promoted the rise
of cognitive science.

From the 1960s and 1970s, Chomsky was often present in political and scientific discourse.
Since Chomskys criticism of the Vietnam War, he has repeatedly appeared as a keen critic of

12



US foreign and economic policy and has become known worldwide as a critic of capitalism and
globalization. According to the Arts and Humanities Citation Index of 1992, Chomsky was the
most cited living person in the world between 1980 and 1992. His contributions are the basis
even to this paper.

3 Data

3.1 Password lists

To bring all that knowledge to a use we need passwords. It is easy to get access to pass-
word dumps nowadays. The media only covers such releases if it is millions of datasets big.
There are bots that crawl the internet for passwords leaks one of the most popular beeing
dumpmon([17]. Of course most of the data returned by these bots isn’t useful. But the amount
of actual passwords is actually still shockingly high. In this paper two different sources were
used: 1. The RockYou database taken from https://wiki.skullsecurity.org/Passwords[16]. This
dataset was leaked in 2009, and contains over 30 million passwords. Since all passwords were
stored in cleartext 100% of these passwords are useable for research. This leak is very well
researched, it revolutionized password research back in 2009 since it was the biggest single
leak of clear text passwords till this day.

Appendix A

2. The 10 Million Passwords List released by Mark Burnett on xato.net[3] It was collected
over multiple years, featuring password dumps from various sources. Including twitter bots,
google search alerts. This list is not from a single leak so its passwords are not restricted to any
specific password creation rule. It is more of a meta list since it contains multiple passwords

leaks over multiple years.

Appendix B
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4 Proof of Concept

As a final result a proof of concept application in golang was written.

As a proof of concept a cyk-parser with a context free grammar was created. Its purpose is to
show that password quality can be measured in more then just its entropy. | created password
masks from the two analyzed sets. At first | tried to give a score on tuples and triples of non
terminals. But it showed that this was not as useful, it was always to specific. Getting out
that "one master grammar" where every non terminal has a weight would most probably be a
very powerful tool since analyzing could be much faster, but creating so would be have been
a manual task. So rather than this approach chose a different one, creating multiple password
"masks".

A single password mask represents a set of passwords with a specific entropy.

For example "?1?1?1?1?1?d?d" would be 5 letters followed by two digits a very common mask.
The syntax | choose is from the very popular and powerful password cracking tool hashcat. So
the first part is 5 times 7, it represents a keyspace from aaaaa to zzzzz. The two ?d would
represent a number from 00 to 99.

Probabilities are used on password masks themselves and not on the terminals in the mask.
Since it is that bad behavior of using that mask that is to be punished in the password score.
The usage of common patterns are especially tuples are common for any random generated
string.

e ?| = abcdefghijklmnopgrstuvwxyz

e ?u=ABCDEFGHIJKLMNOPQRSTUVWXYZ

e 7d =0123456789

o 7s = «space»!"()*+,-./;;<=>?@[|'|& % $ # _{} ~"N\
e ?a="?7u?d?s

e ?b = 0x00 - Oxff

If generating a new password, one can test it against that tool to get feedback of its quality.
But be aware that in the end this tool won’t give you any new insights in most cases. The only
secure way is to generate an entirely new passwords if rotating them. This is only applicable for
an user if he uses a password manager.

14



One could summarize all these problems in one sentence:
Humans are lousy random-number generators

Wrapping it all up, we can see that a password safe is the one most important tool when it
comes to password safety. But it is important to actually generate random passwords. At the
moment there are a lot of misconceptions out there amplifying the problems. On the one hand
IT Managers not understanding how attacks on their infrastructure actually happens. Therefore
creating nonsense rules for password length and rotation. On the other hand developers giving
the user a wrong feeling about what is secure. There should be less talk about the single
broken password ‘123456’ but more about broken processes and broken tooling. The "top
10" passwords lists serve for a good laugh but no insight in the strength of the passwords on
a specific site at all. One should try helping the users to set one strong password or even
better try to use more secure methods as public key authentication or two factor authentication
wherever possible. The User is not the enemy but quiet often the system administrator or the
developer is, by creating these rules. Pass the Hash attacks[14] show the additional issues that
arrive with the use of passwords. Therefore Public-key authentication should be used where
possible.

4.1 Statistical Analysis

A. Password length
B. Character Distribution
C. Password Mask

4.2 Password reuse

Another major problem of passwords nowadays is password reuse. One major amplifier for
that issue is the wrong use of password rotation policies. You can stop users to reuse the
same password they had before again by saving old password hashes. But it is impossible
to determine if just one single character in the password changed. Usually this character is
a digit that gets incremented. This reduce the whole rotation policy to absurdity, if anyone
compromised the account it is still compromised since, the change will be obvious even for an
automated attack.
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5 Results

Some of the results this paper were already shown by others as [15] It is important to remember
that the user or his password can be the weak link in a computer system, but this does not
make him the enemy. If attackers think about the "weakpoint user" first when attacking, why
don’t we think about "users first" when designing security software. The password analysis in
this paper showed that most of the "tricks" to generate secure easy to remember passwords
won’t work out. Why are password policies enforced but not the use of a password manager.
There are multiple papers proving the benefits of password managers and multiple proving the
disadvantages of password policies.[6]

Attacks on IT infrastructure are already fact based and have a measurable output, as long as
security doesn’t do the same the attackers will always be one step ahead.
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Table 4: The length of the passwords rockyou

character length

percent of passwords

number of passwords

8
7
9
10
6
11
12
13
5
14
15

20%
17%
15%
14%
13%
06%
03%
02%
01%
01%
01%

2966037
2506271
2191039
2013695
1947798
866035
555350
364174
259169
248527
161213

Table 5: Simple Masks rockyou

charceter class

percent of passwords

number of passwords

stringdigit

string

digit

digitstring
othermask
stringdigitstring
stringspecialstring
stringspecialdigit

stringspecial

37%
28%
16%
04%
04%
03%
01%
01%
01%

5339556
4115314
2346744
663951
576324
450742
204441
167816
148328
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Table 6: Advanced Masks rockyou

mask percent of passwords | number of passwords keyspace
20212121212121?1 04% 687991 208827064576
2121212172121 04% 601152 308915776
21212121?12121 04% 585013 8031810176
21212121212121212 03% 516830 5429503678976
?d?d?d?d?d?d?d 03% 487429 10000000
?d?d?d?d?d?d?d?d?d?d 03% 478196 10000000000
?d?d?d?d?d?d?d?d 02% 428296 100000000
21?21?21?1?1?1?d?d 02% 420318 30891577600
2?21212121212121217 02% 416939 141167095653376
?d?d?d?d?d?d 02% 390529 1000000
?d?d?d?d?d?d?d?d?d 02% 307532 1000000000
21?1?1?1?1?7d?d 02% 292306 1188137600
?20?21?1?21?1?1?1?7d?d 01% 273624 803181017600
2120212121212121212121 01% 267733 | 3670344486987776
?21?1?1?1?7d?d?d?d 01% 235360 4569760000
?1?1?1?1?7d?7d 01% 215074 45697600
212121?1?1?1?1?1?7d?d 01% 213109 20882706457600
20?21?1?21?1?1?2d 01% 193097 3089157760
212121?1?1?1?1?d 01% 189847 80318101760
212020212121212121212121 01% 189355 | 95428956661682176
?1?1?1?7d?d?d?d 01% 178304 175760000
?21?1?1?1?1?7d?d?d?d 01% 173559 118813760000
?21?21?1?1?1?1?7d?d?d?d 01% 160592 3089157760000
2121?21?1?121?21?17d 01% 160054 2088270645760
?1?1?1?1?1?7d?d?d 01% 152400 11881376000
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Table 7: The length of the passwords 10million

charcater length

percent of passwords

number of passwords

8
6
7
9
5

10
4

11
12
13

29%
25%
16%
06%
04%
04%
03%
02%
01%
01%

2980863
2543976
1662849
680815
494992
471289
345137
263466
190997
135587

Table 8: Simple Masks 10million

charceter class

percent of passwords

number of passwords

string
stringdigit

digit

digitstring
othermask
stringdigitstring
digitstringdigit

41%
21%
20%
05%
05%
03%
01%

4185383
2173421
2035160
549645
507869
363760
107776
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Table 9: Advanced Masks 10million

mask percent of passwords | number of passwords keyspace
212121212171 11% 1175666 308915776
21212121212121?1 08% 897374 208827064576
2212121212121 07% 749491 8031810176
?d?d?d?d?d?d?d?d 07% 739507 100000000
?d?d?d?d?d?d 07% 702944 1000000
2121212171 03% 314438 11881376
?d?d?d?d?d?d?d 02% 208532 10000000
?21?21?1?1?1?1?7d?d 01% 199591 30891577600
2121?21?21?1?121217 01% 196953 5429503678976
21?21?17 01% 173532 456976
?d?d?d?d 01% 142092 10000
?21?21?1?1?217?1?17d 01% 138451 80318101760
?21?21?1?1?1?7d 01% 124788 118813760
212121212121212121?1 01% 120658 | 141167095653376
?1?21?1?1?1?7d?d 01% 119001 1188137600
?1?1?1?1?7d?d?d?d 01% 110167 4569760000
21?21?1?1?1?1?7d 01% 107369 3089157760
?1?1?1?1?7d?d 01% 104593 45697600
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